Fiber-optic
thread example

Rotate + tum
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570
.561
560 _____/\,,,,,A______:’%é_ ______
553 554
550 — .
i Y4
(significant)

Cutoffs established, taken from prior example.

1 . ;
Rotate 7 turn counterclockwise, extending
cutoff lines to the right and shading rejection

Now let’s say we receive 5 shipments over several months
and calculate the sample ¥ for each as follows.

zone (as shown in next diagram).

553 mm X=.55
561 mm v

X
X
X =.547 mm (significant)

Each sample ¥ is plotted sequentially as the shipment comes
in and connected with a line segment to prior result (as
shown above).

Note that one sample X (.547 mm) was marked *‘significant.”” This means,
based on this one sample average, we would reject this particular shipment as
not meeting specifications. At this point, the production supervisor would likely
be called in. After verifying results, the supervisor may very well call the man-
ufacturer of the fiber-optic thread to inform them that their process was not
meeting specification, and most likely ‘‘out of control.”” A process is deemed
out of control when sample ¥’s fall outside the control limits for acceptance of
Hgy and we suspect a possible deterioration of the process.

Note that a control chart provides a clear visual history of this hypothesis
test. Often we learn more about a process by keeping this kind of record. Some-
times we can spot a trend, a process going out of control before a significant
sample ¥ is achieved. Or we may be able to pick up slight shifts in the value of
i, even though sample X’s are in control. For a process in control, the sample X¥’s
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should fluctuate (usually in a ragged pattern) around the value of . Notice that
the X’s we calculated, .553, .561, .547, .554, and .556, seem to fluctuate more
around the value of .555 (than the value .560). If this trend continues for future
shipments, we may very well suspect the thickness of the fiber-optic thread
shipped may be on average, i = .555 mm. Of course, whether or not this slight
shift makes a difference in our production would have to be assessed.

A control chart* provides a clear visual history of a repetitive test.

One-Tailed Hypothesis Tests
(Large Sample, n = 30)
A one-tailed hypothesis test is quite similar in method to a two-tailed hypothesis

test, except in a one-tailed test, the Type I error risk (o) is assigned to only one
tail of the ¥ distribution.

One-Tailed Hypothesis Test?
All the Type | error risk, o, is assigned to ene tail of the ¥ distribution, and
we reject A, for any sample ¥ falling in this one tail only.

The o risk may be assigned to either the right or left tail, depending on the
hypothesis you wish to test. The following two examples demonstrate this.

*Historical note: Walter Shewhart first developed control charts in 1924, which were tested
and developed within the Bell Telephone System, 1926-1931. For further historical
reading on this topic, refer to, W. Peters, Counting for Something (New York: Springer-
Verlag, 1987), Chapter 16, ‘*Quality Control,”” pp. 151-162.

tActually, some controversy surrounds the use of one-tailed hypothesis testing. Refer to D,
Howell, Statistical Methods for Psychology (Boston: PWS Publishers, 1982, pp. 64—66) for
a discussion of one- and two-tailed tests. Essentially, Howell argues that an investigator
may start with a one-tailed test, yet reject in two tails, thus inadvertently increasing the o
level of the experiment. Howell also states, **A number of empirical studies have shown
that the common statistical tests . . . are remarkably robust when they are run as two-
tailed tests, but are not always so robust when run as one-tailed tests.”” Robustness is the
degree 10 which you can violate the assumptions of a test and yet leave the validity more
or less unaffected.
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To Test the Hypothesis To Test the Hypothesis
Ho: i = 150 or more, we would Hy: 1w = 150 or less, we would
assign the total o risk to the left tail assign the total o risk to the right
in the X distribution and reject H, tail in the X distribution and reject Hy
for any sample X in this left tail, as for any sample X in this right tail, as
shown shaded below. shown shaded below.
Populau'on)/‘\_,\/\\\ Populalw

Accepl H, =— Accept Hy
Total o assigned

to left tail ——

X distribution X distribution Total o assigned
Lo right tail

— - i

150

150
Cutoff Cutoff

Notice in each example above, the total Type I error risk, ¢, was assigned
to only one tail in the ¥ distribution. This will affect the determination of the z
score at the cutoff. Other than this. a one-tailed test is conducted in almost an
identical manner as a two-tailed test. For instance, suppose we wish to test the
following null hypothesis:

Hy: = 150 or more
at an oo = .05 level of significance; we would proceed as follows:
First, assign the total o risk (.05 or _
5%) to the left tail of the X distribution. Why P OP““‘“O")/\"/\
the left tail? Well, because we reject Hy only

if our sample average falls significantly

below 150. (Note: you would not reject the COeRt i

: _ e Total &2 =35%
hypothesis, L = 150 or more, for a sample e A
- ¥ —\ A5,
x greater than 150.) left tail 150
Second. to find the z score at the Cutoff
cutoff, we look up in the normal curve table, z=-165
45% (50% — 5% = 45%). Remember, the
; Normal Curve Table
table reads from the center of the normal T To0 o1 02 . 05

curve out. (Note: 4500 falls midway be- 0.0 [
tween 4495 and 4505 in the table, thus, '

round to the higher number, .4505, which is _
z = 1.65.) Since the cutoff is below p, we 1.6 [e—————4505)
apply a negative sign to the z score; thus
Zeworr = — 165,




198

Chapter 7 Hypothesis Testing

The decision-making process, in this case, is: Accept Hy for any sample ¥
to the right of the cutoff, otherwise reject. That is, we reject Hy for any sample
X in the shaded tail.

At this point you might ask, why don’t we make sure j is 150 or more by
shading all of the values below 150 as follows?

Accept Hy—- This is wrong

Remember, we are talking about sample averages, X's, and X’s tend to fluctuate
around the population average, [L. That is, L may very well be exactly 150 and
still you could get sample X’s below this value. So, we must leave some margin
below u for the ¥’°s to fluctuate, as follows:

=

Accept H,—

Correct for
i = 150 or more

150

To recap: in a one-tailed hypothesis test, you assign the total o risk to one
tail of the X distribution (which we shade), and you reject H, for any sample X in
this shaded tail. Other than this, a one-tailed hypothesis test is conducted in
almost an identical manner as a two-tailed hypothesis test.

At this point. [ have found the following two reminders helpful.

Keep in mind for all hypothesis tests

1. Use o, the level of significance, to establish the cutoff(s), and

2. Shade where you would reject /.
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Applications

Now let’s see how this works in a study in psychiatric medicine.

Example ———— Elavil,* a powerful sedating drug prescribed by psychiatrists, has been proven
effective over decades of use in the treatment of depression, however Elavil can
have side effects (causing high blood pressure, dry mouth and impotence prob-
lems, blurred vision, etc.), so daily dosages must be minimized. However, one
patient may need 75 mg per day to relieve depression while another patient may
need 250 mg per day to have the same effect, depending on the individual.

Suppose a leading trade journal makes the claim that the average effective
dosage nationwide for patients is at least 150 mg per day. Concerned such an
article may influence psychiatrists to unnecessarily increase dosages, suppose the
National Institute of Mental Health in Bethesda, Md., conducts a test by randomly
sampling 400 patients nationwide, with the following result:

n = 400 patients
X = 141.6 mg/day minimum effective dosage .

s = 48.2 mg/day

Use this sample result to test at a level of significance of o = .05, the trade
journal’s claim

W is at least 150 mg/day.

Solution This is a one-tailed hypothesis test since in effect the trade journal’s claim is
i = 150 mg/day or more. In other words, you would reject the claim only if your
sample ¥ was unreasonably below 150 mg/day. That is. we reject only in one
direction.

A hypothesis test consists of three fundamental sequences as follows:

Sequence I. Set up initial conditions
State null hypothesis, the initial Hy: = 150 mg/day or more
claim you wish to test: (n = 150)
State alternative hypothesis. If Hy Hy: W is less than 150 mg/day
proves false, what must we (k< 150)
conclude?
State the risk of rejecting Hy in o= .03 (3%)

error, the level of significance, c.

*Elavil is part of the tricyclic family of antidepressant drugs, along with Sinequan, Tofranil.
and Norpramin. Each relieves depression with varying degrees of sedating effect. Elavil is
one of the more powerful sedating drugs, often used when agitation or sleeplessness
accompany depression.
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Sequence 1. Assume Hj true, use o to establish cutoff(s)

Calculate

Cr=—mm—mm = T 20 4
OF: YoUn Uno J400 20

(Note s was used to estimate o.)

Draw curves £ distribution
Using our above calculation, oy
= 2.4, we estimate the spread of

the x distribution.

145.2 147.6 150 1524 154.8

Establish cutoffs using o = = 8 1 .
Assign the total o risk (.03 or
3%) to the left tail of the X distri-
bution because we would reject
Hy only if our sample ¥ falls sig-

e . o=3%

nificantly below 150 mg/day. 47%

Next, to find the z score at

Accept Hy—>

& distribution

the cutoff, we look up 47% in the s aR v
normal curve table (50% — 3% o
= 47%.)‘ Remember, the Fable Kol anoe Tabite
reads from the center of the : .00 01 .02 ... 08
normal curve out. (47% in dec- 0.0 A
imal form is .4700; the closest
value is .4699.) :

18 |= {4699

Since the cutoff is below (L = 150, the z score will be negative. Thus, z =
—1.88. Substituting the z score of —1.88 into our formula, we solve for the X
value at the cutoff.

t
|

—~1.88 = ———



Sequence

METHOD ONE
This method uses the
actual value of the sample x
(141.6 mg/day) in the
decision-making process.

RECALL: our sample results were
as follows:

n = 400 patients

X = 141.6 mg/day.
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Solving for ¥:

X = 145.5 mg/day at the cutoff

Thus, the values at the cutoff might be represented as follows:

Accept Hy————

X distribution

1 150

Cutoff z =~1.88
Cutoff x = 145.5 mg/day

Note that in the diagram above there is no indication of the population, such as population standard deviation
lines. This is because the sample size is so large (n = 400), causing the x’s to cluster so tightly around p that
the population standard deviation lines are far out of view.

III. Accept or reject Hy using your sample X

Criteria: Accept Hy (L = 150 mg/day or more) if the sample X falls above
(or on border of) the X cutoff of 145.5 mg/day, otherwise reject.

Decision: Since our sample ¥ (141.6 mg/day) fell in the rejection zone, we
reject H and accept H,, the alternative hypothesis (|t is less than 150
mg/day).

Sample ¥ = 141.6 X distribution

ﬁ

T 150
¥=1455

at cutoff Reject Ho
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METHOD TWO

This method uses the z

| score of the sample x in the
decision-making process.
To use this method,
however, we must first
calculate the z score of our
sample x (141.6 mg/day),

| as follows:

X—u 1416 - 150

2 =
(57 2.4
z = —3,60
Answer

Criteria: Accept H, (1 = 150 mg/day or more) if the = score of the sample
X falls above (or on border of) the = score cutoff of —1.88. otherwise
reject.

Decision: Since the = score of our sample ¥ (—3.50) fell in the rejection
zone, we reject Hy and accept H,. the alternative hypothesis (W is less than
150 mg/day).

Sample x
o score =-3.50

'

A distribution

} 0
z=-1.88

at cutoff Reject Hy

Whether we use the actual value or = score of the sample ¥, we will always make
the same decision. In this case, we reject Hy,. This implies we accept H, (L is less
than 150 mg/day).

The final answer may be presented using actual values or = scores. We will use
both.

Actual values  Since the sample average (141.6 mg/day) was below the
cutoff of 145.5 mg/day. we reject Hy,. Therefore we

Accept H): W is less than 150 mg/day

z scores Since the sample average : score (—3.50) was below the cutoff
of —1.88. we reject Hy. Therefore we

Accept Hy: wis less than 150 mg/day

#*P-value approach: Actually, as mentioned in the prior section, a third method is also used.
This method calculates the probability of achieving a result at least as many standard
deviations from the expected value as your sample result. Let’s consider this using the
above example. Since we achieved a sample result of —3.50 standard deviations from the
expected value. |, we shade all the area that is ar feast —3.50 standard deviations from Q.
Note in a one-tailed test, we shade in one tail only. Next we look up the probability of
achieving a sample result in this shaded area, which is .02% (.0002), a negligible amount.
This is our p-value. This is usually
expressed in research reports and
computer software printouts as either p

= .0002 or p < .03 (meuning the 02% (.0002)
probability of achieving this sample X is
less than the o level of the test). l

For p = o, Accept H,, otherwise reject -3.50 u

Since in our case, .0002 < .03, we reject Hy,.
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Other ways the answer may be expressed:
The null hypothesis is rejected,
or

z = —3.50 (significant) &

Control Charts

Besides this sample result, ¥ = 141.6 mg, as presented in the previous example,
suppose two identical studies (same hypothesis, same sample size and level of
significance) yielded ¥ = 145.8 mg and ¥ = 142.7 mg. Plot these three results
into a control chart and indicate significant findings.

150

x=1458
145.5 \
x= 1427
¥x=141.6 (signficant)

(signficant)

Small-Sample Hypothesis Tests (n < 30)

In statistical testing, small-sample sizes (n < 30) may also be used effectively,
but only when the following conditions are satisfied.

When using small samples (n < 30)

1. Your population Mound-shaped
should be normally population
distributed or at least
somewhat mound
shaped, and

s
(n<30)
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2. If we use s to estimate MOUdeﬁhapﬁd

, s population

o in the calculation o n e

O = 6/</n, we must first satisfied

use a t score, not a z
score, to define the

number of standard

deviations the ¥’s ‘ A{.‘ccﬂ
would be expected to b Hy {
fall from p.

Essentially, the first condition (population normal or at least mound shaped)
must be satisfied to ensure that the ¥’s cluster close enough to [ in a reasonably
normal shape such that accurate predictions can be made. When your population
is nor mound shaped, the X’s spread out in a variety of patterns, often quite far
from W, as illustrated below:

Three Population Types

Mound-shaped Non-mound-shaped Non-mound-shaped
{bimodal) (skewed)
u u H

=

2
1
30

Notice it is only in the mound-shaped population that the X’s cluster close
to W in a normal distribution for all sample sizes. For this reason, small-sample
sizes can be used when your population is mound shaped. Notice in non-mound-
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shaped populations, a small-sample size (n < 30) will often produce x’s that are
quite far from W, forming a variety of nonnormal patterns, making predictions
about where the X’s will fall quite perilous. Thus, when sampling from non-
mound-shaped populations, small-sample sizes should be avoided. Of course,
when your sample size grows sufficiently large (usually n = 30 is considered
sufficiently large), the X’s draw in quite close to L for almost any shaped popu-
lation, even for non-mound-shaped populations. Thus, for n = 30, the population
shape has little effect on the X distribution shape; the X’s will distribute normally
about n for nearly any shaped population, thus assuring reliable predictions.™

Assuming we have a mound-shaped population, a second condition must
also be satisfied. If we chose to use s to estimate ¢ (which we most often do) in
the formula, o7 = G/\/E. this necessitates a correction factor in our calculations—
which we shall call the r score adjustment. Although this is more fully discussed
in chapter 8, section 8.4, an overview here might be helpful.

Whereas, a large sample s is a reasonably good estimator of ¢, meaning
that s-values cluster quite close to ¢. More specifically, if we were to take
thousands of samples of size, say. n = 35 and calculated the standard deviation,
s, for each sample and plotted these thousands of s’s, the resulting distribution
would be clustered relatively close around the true value of o, as follows:

jag

Population

Median

svaluge —»

s distribution

—e—
Q

#*Technical note: For highly unusual population shapes (such as, a population with an
extraordinary skew), n may have to be larger than 30 to be assured of a normally
distributed x distribution. An example of this might be the distribution of annual salaries of
workers in lower Manhattan, which includes the highly skewed million-dollar-plus salaries
of many Wall Street executives.
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This is not the case for small-sample s’s. Small-sample s’s tend to underestimate
o; in fact, small-sample s’s tend to underestimate ¢ more and more as n (the
sample size) decreases.® illustrated as follows:

© Median value line: half
the values are below and
half above this line.

Population

Median o
§ |
Median
5
n=12
n=35
=I_l
i
t [0

Notice that as your sample size decreases (n = 35, n = 12, n = 5), the 5's
tend to shift to lesser values, such that the median s value falls farther and farther
below the true value of ¢. This means, more often than not, when you calculate
the s of your sample, it will be /ess in value than ©.

Now, since we use s in place of ¢ in the formula,

6] 5

O = —F/—=—F7
X \/H \/E

It s underestimates &, then o7 will also be underestimated. In other words, more
often than not, we will calculate a o5 that is less in value than it actually is—
because of the underestimated 5. Visually, this might be represented as follows:

Population False impression of the ¥ distribution

based on an underestimated G;

True ¥ distribution

*Technical note: s* distributes around 6° in a chi-square-shaped distribution and on average
5% = ¢? for all sample sizes, however the median s? value drops below 62 as n decreases.
The distribution of s is similar and can be found by compressing the base line suitably, to
paraphrase W. Gossett (the statistician who originally published these findings in
Biometrika, V1. pp. 1-25, 1908, under the pen name, Student), the distribution of s2 has a
direct linear relationship to the distribution of x?, chi-square, specifically,
s2 = It
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Fortunately, we can compensate for this. Say, for instance, we conduct a
two-tailed hypothesis test at & = .05, using a sample size of n = 5. We know,
for a large sample, oo = .05 implies an interval bounded by *+1.96 standard de-
viations. In other words, 95% of the 1’s are expected to fall within £1.96 standard
deviations of . However, in the case of n = 5, we must open up the interval to
+2.78 standard deviations, use the letter ¢ and say, 95% of the X’s will fall in the
interval between +2.78 standard deviations, illustrated as follows:

False impression of the i distribution
based on an underestimated G\
True x distribution

Population

False —»
95% of X's
-1.96 +1.96
True -
95% of ¥’s
1=-2.78 t=+2.78

In other words, to ensure we have enclosed the trie 95% of the X's when
using small sample size n = 5, we must go out farther, to +2.78 standard devi-
ations (not £1.96). And instead of using the letter z to represent the number of
standard deviations, we use the letter,* ¢,

Of course, at this point, you might ask, where do we locate this 7 score
adjustment of £2.787 The answer is simple: we look it up in the 7 tables in the

“Technical note: Actually. a number of liberties were taken with this explanation. In reality,
f-values were derived empirically by W. Gossett. He started with a known mound-shaped
population of values, then literally took thousands of random samples of size n = 2. For
each. he calculated the number of standard deviations (= score) the sample ¥ appeared 1o
fall from W (using the 5 of the sample for each calculation). These = scores (many of which
were distorted because of the underestimations of o;) were plotted into a histogram that he
called the 7 distribution for # = 2. This distribution resembles a normal curve, but is more
flat on top and spread out in the tails. He repeated this process for n = 3, n = 4, etc. In the
case above, for instance, where n = 5, he noted 95% of the X’s appear to fall within +2.78
standard deviations of i, based on a number of distorted estimates of 65. He had also
derived equations for the distributions from fundamental theory and used these empirical
results to validate these equations. (For further details, refer to endnote 1.)

Further technical note: W. Gossett in his original 1908 Biomerrika article claimed
the population shape can deviate quite far from normal before this would influence the
predictive value of these r distributions.
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back of the text. Since we are conducting a two-tailed hypothesis test at o = .05,
we look under thar particular column, then down to degrees of freedom (df) of
4 (our sample size minus one, 5 — 1 = 4), as follows:

Two-Tailed / Two-Tailed
Hypothesis 10 .05 02 01 Hypothesis

6.31 1271 31.82 63.66 1
2.92 4.30 6.97 9.92 2
235 8 4.54 5.84 3
4
5

2.13 (378D 3.75 4.60

2.02 ) 3.37 4.03

o]

n-1
5-1

Degrees of freedom (or df): Although difficult to define completely,” let us say
for our purposes, df defines a value that allows us to identify the correct
sampling distribution and thus the proper cutoff value(s) for a given
experiment. Essentially each df value represents a different sampling
distribution.

Applications

Now let’s see how small-sample testing works in two experiments. The first is a
classroom experiment concerning social intelligence in children.

*Technical note: df is more formally defined as: ‘‘For any problem the number of degrees of
freedom is the number of variables reduced by the number of independent restrictions on
those variables,”’ H. Walker and J. Lev, Elementary Statistical Methods. (New York: Holt,
Rinehart, and Winston, 1969), p. 276. The concept was known to Carl Gauss (1826) but it
wasn’t until Sir Ronald Fisher’s 1915 paper, ‘‘Frequency distribution of the values of the
correlation coefficient in samples from an indefinitely large population,” Biometrika, Vol.
X, pp. 507-521, where Fisher applied n-dimensional geometry to its application that it
gained widespread attention. The concept is quite advanced, but for those who wish a
deeper understanding, refer to H. Walker, ‘‘Degrees of Freedom,”” Journal of Educational
Psychology 31 (1940): pp. 253-269.
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Sequence

Sequence
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Social 1Q in young children, that is, a child’s ability to properly assess
nonverbal messages of teachers and peers (such as, tone of voice, body gesture,
and facial expression) and properly assess social boundaries (such as, sensing
how close to stand, responding at proper intervals, and smoothness in entering
groups and in communicating emotions like anger and happiness) may be a more
accurate measure than mental 1Q in predicting later academic achievement and
overall success throughout life, according to researchers at Harvard, University
of Illinois, University of North Carolina, and other institutions.

Suppose Ms. Peach has her Lake County, Illinois, elementary school class
of 9 students (underachiever class) tested on a social 1Q scale, with the follow-
ing results.

n = 9 underachiever students
X = 85.3 social IQ

s =117 (assume a normal population)

=
|

a. Test the hypothesis at o = .02 that these students came from a population
with social 1Q, u = 100 (which is average for children of this age). Are the
results significant?

b. If the data constitutes a valid random sample of underachiever students,
what conclusions can be drawn? Briefly discuss validity.

Since a small-sample size, n = 9, was used, we must be careful that two condi-
tions are first satisfied: (1) the population is at least somewhat mound shaped (it
was stated, assume a normal population, so this condition is satisfied) and (2) if
s is used to estimate ©, f scores must be used, not z scores (notice: we were not
given G, so s must be used to estimate o, thus we must use ¢ scores).

A hypothesis test consists of three fundamental sequences as follows.

I. Set up initial conditions

State null hypothesis, the initial claim you Hy: 1 = 100 social 1Q
wish to test.
State the alternative hypothesis. If H, proves Hy:pu # 100 social IQ

false, what must we conclude?

State the risk of rejecting Hy in error, the a=.02(2%)
level of significance, ©.

II. Assume H, true, use o to establish cutoff(s)

Calculate

O’ GT=_“'L 2= e
: JnoJno /9 3

(Note s was used to estimate ¢ above; a small-sample s will tend
to underestimate o, causing ¢z to be underestimated, too.)
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Note: Had this been a large
sample, the boundaries would have
been +2,33 standard deviations
instead of £2.80.

Draw Curves & distribution
Using our above calculation, o5
3.9, we estimate the spread of the X
distribution. (Keep in mind, o5 is [

probably wunderestimated, however 922 96.1 100 103.9 107.8

we will compensate for this by using ~ =t 0 # Wl Ewos
t scores.)

u

A distribution

Establish Cutoffs using o
Our level of significance in this case
is oo = .02 (2%) which in a two-
tailed test implies we will accept the

Middle 98%
of X'y

middle 98% of the X’s as our 100
boundary for accepting Hy as true. =7 0 =2
In our ¢ tables, we look up: two- /=29 t=+2.90
tailed hypothesis, o = .02, to obtain
t = +2.90 standard deviations. Re-
member: Look down the df (degrees
of freedom) column to 8 (df = n —
1i=9—-1=28).
% B 1 tables o
Two-tailed /
hypothesis .02
dr
%

o

T |
9-1

We solve using the z formula, only now we use the letter ¢ in place of -.
We can view the ¢ score® as an adjustment to the z score (to compensate for the
underestimations of o3).

“Technical note: Actually, we are sampling from the ¢ distribution (for n = 9), which is,
essentially, a distribution of distorted = values. More specifically, it is a distribution of
thousands and thousands of = scores describing how far in standard deviations the X's
appear 1o fall from W, based on distortions created by using small-sample s's to estimate

<. In this example. the middle 98% of the x's appear to fall in the interval between £2.90
standard deviations of . In reality. the ¥’s are not falling £2.90 standard deviations from
1. but the underestimations of o7 make them appear so. These distorted = scores are called
[ scores,

Rearranging the = formula, we have zoy = ¥ — p. Il o5 is underestimated, - must increase
to keep ¥ — p constant. This might be written: zTazl = ¥ — p (a constant value). Thus T =1 Put
thousands of these distorted z’s into a distribution = ¢ distribution. Each sample size has a
separate ¢ distribution.
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METHOD ONE
This method uses the
actual value of the sample x |
| (85.3 social 1Q) in the |
. decision-making process.

Recall: our sample results were as
follows:

n = 9 students

X = 85.3 social IQ
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xX—u x ==
tf = iy =
% Ox %( Ox
X — 100 x— 100
290 = —— +290 = ———
i 39 3.9
Solving for v: X = 88.69 x= 11131

The complete solution showing the cutoffs might appear as follows:

Population

Accept H,

X distribution

B4 $
¥=88.60 F=111.31
r=-2.90 ’80 t=+2.90

II1. Accept or reject Hy using your sample ¥

Criteria: Accept H, (n = 100 social 1.Q.)
if your sample ¥ falls between

the established ¥ cutoffs of 88.69

and 111.31, otherwise reject.

Decision: Since our sample .t

(85.3) fell in the rejection zone,

we reject H and accept H |, the

alternative hypothesis (u # 100 social L.Q.).

Sample ¥ = 85.3
N

X

il 4
x=88.69 un=100 ¥=111.31
(cutoff) (cutoft)

Reject Ho
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" METHOD TWO
| This method uses the t

score of the sample ¥ in the

decision-making process.
| To use this method,
however, we must first
. calculate the t score of our
sample x (85.3 social Q),
as follows:

t_)?—u_85‘3—100

o5 3.9
t=-377
Answer

Criteria: Accept H,, (1 = 100 social 1.Q).)
if the 7 score of your sample ¥

falls between the established ¢ score
cutoffs of —2.90 and +2.90,

otherwise reject.

Decision: Since the ¢ score of

our sample X (-3.77) fell in the
rejection zone, we reject H, and
accept H |, the alternative hypothesis
(p # 100 social 1.Q.).

t score of

sample X is

=3.77
R

[

t } t

t=-2.90 =0 1=+2.90 3
(cutoff) (cutoff) Reject Hy

Whether we use the actual value of the sample ¥ or the equivalent ¢ score,
we will always make the same decision. In this case, we reject Hy. This implies
we accept H: (u = 100).

a. The final answer may be presented using actual values or ¢ scores,

Actual values  Since the sample average (sample ¥ = 85.3 social 1Q) was
outside the range (88.31 to 113.31) where we would most
likely expect sample averages to fall if Hy were true, we reject
Hy. Therefore, we must

Accept Hy: o # 100 social 1Q

1 scores Since the ¢ score of the sample average (—3.77) was outside
the range (—2.90 to +2.90) where we would most likely
expect ¢ scores of sample averages to fall if Hy were true, we
reject Hy. Therefore, we must

Accept Hi: p # 100 social 1Q
The answer may also be expressed simply as:
The null hypothesis is rejected,

or
t = —3.77 (significant)
So, to answer part a, yes, the results are significant.
b. If the data constitutes a valid random sample of underachievers, the results
provide evidence that on average underachievers score significantly below

other children in their age group in the social skills observed in the
experiment, which we labeled social 1Q.

However, like many experiments in the social sciences and education, this
experiment is replete with potential violations to validity, as follows.
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Random selection: First, the study violates our most basic tenet of sam-
pling: random selection. Intact groups (such as, classes, clubs, and residents of
a building) often have common interests or ties and cannot be assumed to rep-
resent a cross section of the target population. For instance, this particular un-
derachiever class may be located in a high-family-income district and all nine
students may be from privileged families. In other words, this one underachiever
class may very well not represent the general population of underachievers.*

Unfortunately, a good many statistical studies in education, marketing, psy-
chology, medicine, and other fields still employ this method of using intact
groups, which is often why experiments in these fields that measure the same
phenomenon vary so widely in results. Random selection must be assured if we
are to use a sample as representative of a population. Intact groups do not con-
stitute random selection (refer to chapter 1 for a more detailed discussion on
random selection).

Other aspects of validity: Of course, even if random selection from the
underachiever population can be assured, the potential for violations to other
aspects of validity in such experiments is enormous. Essentially, we must guar-
antee internal and external validity, defined in regards to this experiment as
follows:

Internal validity: the certainty that our observations were accurate and
reliable measures of the social characteristics we set out to measure.

External validity: the certainty that our methods and presence in no way
affected the true social behavior of the children.

Assuring internal and external validity in experiments of this nature is no
easy task. Actually, this experiment and its inherent questions of validity open
up the whole topic of problems besetting scientific investigation in the social
sciences. Although much too broad a topic to address here, I will discuss it briefly,
then recommend two books for further reference.

To begin with, let us say, “‘labels’” are dangerous in any scientific study.
In this experiment, we called a certain set of social characteristics, social IQ,
when, in fact, we really do not know what we measured, except for a collection
of social characteristics at a certain point in a child’s life. In reality, what we
may be measuring is merely adaptability to white middle-class behavior in
America rather than a universal set of social intelligence that crosses all cultures
and classes. And this social intelligence may be *‘learned’” behavior rather than
“‘inborn,”” thus the phrase 1Q, which implies a natural capacity, may be mis-
leading. But, be that as it may, whatever we label these characteristics, they first
must be precisely defined and set forth at the beginning of the experiment so
future researchers (or any reader for that matter) can properly assess and criticize
your work.,

*Intact groups may more effectively be used as one element in a random sample, say for
instance, if we randomly selected 36 classes nationwide, in which case, one class offers
one result in a random sample of n = 36 classes,
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Example

Hypothesis Testing

Now, once the characteristics we wish to measure are set forth, we must
determine the best way to get an accurate and reliable measure of these char-
acteristics. When personal judgment of an observer is involved, this is a difficult
task. For instance, let’s use how close a child should stand while talking. What
objective scale can be used? Is the observer in any way biased? Would a child
be rated the same from observer to observer? Does a rating of 120 on this char-
acteristic mean twice the social savvy as a rating of 60?7 And what does “‘twice™’
the social savvy mean? Obstacles abound in this type of experiment.

Even if accurate and reliable measures can be attained (thus, ensuring in-
ternal validity). did the methods of the experiment or presence of the observer
in any way alter the true social behavior of the child? Were the children observed
in secret in their natural environment? Or were artificial situations enacted? How
were the times chosen to observe the child—convenience to the observer, when
the child is at play, when the child is upset? These are all variables that may
substantially influence results.

For further reading on proper experimental technique for testing in psy-
chology, education, and other fields where similar difficulties exist in obtaining
random selection and controlling risks to validity, refer to D. Campbell and .
Stanley, Experimental and Quasi-Experimental Designs for Research (Boston:
Houghton Mifflin Co., 1963) and L. Tyler and W. B. Walsh, Tests and Measure-
ments (Englewood Cliffs, N.J.: Prentice-Hall, 1979). ]

Starting from Raw Data

Our second example concerns the cranial capacity (brain size) of Neanderthal
man. The example is presented not only to demonstrate small-sample testing, but
to demonstrate how a hypothesis test is performed starting from raw data.

Much of the 1800s was spent by certain medical doctors and scientists trying to
prove the cranial capacity of modern Caucasian man was larger (and, by impli-
cation, of greater intellect) than earlier Caucasian groups or other cultural groups,
such as, Mongolian, Semitic, Malay, American, African, etc. Many educated
people in the 1800s accepted this without evidence, but nothing was more illu-
minating than the fossil skulls first dug up in 1856 of Neanderthal man (a cousin
to our Cro-Magnum species but much older and more primitive, who roamed
Europe and the Middle East from 200,000 B.C. to 30.000 B.C.). Suppose 11 such
Neanderthal skulls yielded the following:

Neanderthal Skull
Cranial Capacity
(in cubic inches)

85 91
89 94
93 90
Neanderthal 90 88
skull 91 86

{assume a normal
93 population)
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a. Calculate x and s for this sample.
b. At a .05 level of significance, test the claim the sample came from a

population with mean of 87.0 cubic inches or less (87.0 cubic inches is the
average cranial capacity of modern Caucasian man). Are the results
significant?

c. If the data constitutes a valid random sample from the Neanderthal

population, what conclusions can be drawn? Briefly discuss validity.

a. We calculate X and s for this data, as follows:

Neanderthal Skull
Cranial Capacity
(in cubic inches) * x—-X(x —X)?

85 90 -5 25 _Zx 990
89 90 -1 1 T ST
93 90 3 9 x = 90.0 cubic inches
90 90 0 0
91 90 1 1 fo [Fa =X
91 90 | 1 n—1
94 90 4 16 _ \/T _ &3
90 90 0 0 ‘ 11 - A
88 90 -2 4 s = 2.864 cubic inches
86 90 -4 16
93 90 3.9
Ty = 990 S(x — 3?2 =82

We summarize the results for part a as follows:

n = 11 Neanderthal skulls
X = 90.0 cubic inches (cranial capacity)

s = 2.86 cubic inches

Il

b. Since a small-sample size was used (n = 11), we must be careful that two

conditions are first satisfied: (1) the population is at least somewhat mound
shaped (it was stated, assume a normal population, so this condition is
satisfied) and (2) since o is not given and we must use s to estimate G, we
use / scores, not z scores.

A hypothesis test consists of three fundamenial sequences as follows.

I. Set up initial conditions

State null hypothesis, the initial claim you Hy: = 87.0 or less
wish to test: (u = 87.0)

State alternative hypothesis. If Hy proves Hy: 1 is more than 87.0
false, what must we conclude? (u > 87.0)

State the risk of rejecting Hy in error, the o = .05 (5%)

level of significance, o.
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Sequence

Note: Had this been a large
sample, the boundary would have
been 1.65 standard deviations
instead of 1.81.

1I. Assume Hj true, use o to establish cutoff(s)

Calculate

Oz

o s 2.864 2864

Draw curves

Using our above calculation, o5
.86, we estimate the spread of the
distribution.

=l U

(Keep in mind, o3 is probably underestimated,
however we will compensate for this by using
t scores.)

= .863

x distribution

gs28 | T sst( 88.72
00

-2 -1 0 +1 +2  tscores

Since we are dealing with a one-tailed test (Note: @ = 87.0 or less), we must
assign the total o risk to one tail, in this case, to the right tail. Why the right tail?
Because we reject Hy only if our sample X falls significantly above 87.0 cubic
inches.

Establish cutoffs using o

Our level of significance in this case
is o = .05 (5%), establishing the
lower 95% of the X’s as our region
for accepting Hy as true. In our ¢
table, we look up a one-tailed hy-
pothesis, o« = .05, to obtain r =
+1.81. Remember: look down the df
(degrees of freedom) column to 10
(df=n—-1=11-1 = 10).

X distribution

Lower 95%

a=.05

of X's \L
87.0
0 ="
1=+1.81
t tables o
One-Tailed /
Hypothesis 05
df

e S

/@ 1.81

n-1
11-1
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We solve using the z formula, only now we use the letter £ in place of z. We can
view the t score as simply an adjustment to the z score (to compensate for the
uncertainty created by using small-sample s’s in the calculation of 6y).*

X —
] = K
Ox
+1.81 = x — 87.0 Note: (.863)(1.81) = 1.56 (rounded); adding
: 863 this to 87.0 gives 88.56 cubic inches
Solving for x: x = 88.56

The completed solution might appear graphically as follows:

-— Accept H, 4‘
/ A distribution

!

Population

88.56 cubic inches

0 x
t=+1.81

Sequence  [II. Accept or reject Hy using your sample ¥

Criteria: Accept H,, (u = 87.0 or less)
if your sample X falls below the established
cutoff of 88.56 cubic inches. otherwise reject.

% METHOD ONE s
i This method uses the ;
| actual value of the sample x |
% j Decision: Since our sample ¥ (90.0) fell
| i in the rejection zone, we reject H, and

| | accept H |, the alternative hypothesis

(p is more than 87.0 cubic inches).

(90.0) in the decision-
making process.

RECALL: our sample results were
as follows:

n =11 skulls

X = 90.0 cubic inches

*In statistics, we view ourselves as sampling values from a precisely defined distribution. In
this case, we are sampling from the ¢ distribution (for n = 11), which is, in essence, a
histogram of thousands and thousands of z scores describing how far in standard deviations
the X’s appear to fall from p, based on distortions created by using small-sample 5°s to
estimate o+. In this example, the lower 95% of the x’s appear to fall below +1.81 standard
deviations from .

Reject H,
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METHOD TWO
This method uses the ¢ i
| score of the sample X in the |
decision-making process.
. To use this method,
however, we must first
calculate the t score of our
sample x (90.0 cubic
inches), as follows:

X-p_90-87 |

t= = = |
o: 863 |

|  t=+348

Answer

Criteria: Accept H (n =87.0 or less)
if the r score of your sample X falls
below the established t score cutoff of
+1.81, otherwise reject.

Decision: Since the f score of our sample

X (+3.48) fell in the rejection zone, we

reject H, and accept H |, the alternative
hypothesis (u is more than 87.0 cubic inches).

t score of sample v
is +3.48,

t=0 t=+181
(cutoff)

Reject Hy

Whether we use the actual value of the sample ¥ or its equivalent ¢ score,
we will always make the same decision, in this case, we reject Hy. This implies
we accept H, (| is more than 87.0 cubic inches).

a. ¥ = 90.0; s = 2.864
b. The final answer may be presented using actual values or f scores.

Actual values  Since the sample average (90.0 cubic inches) was above the
range where we would expect sample averages to fall if Hy
were true (up to 88.56 cubic inches), we reject Hy. Therefore,

we must
Accept Hy: U is more than an 87.0
cubic inch cranial capacity
t scores Since the t score of the sample ¥ (+3.48) was above the range

where we would expect ¢ scores to fall if Hy were true (up to
+1.81), we reject Hy. Therefore. we must

Accept H: WL is more than an 87.0
cubic inch cranial capacity

The answer may also be expressed simply as:
The null hypothesis is rejected,
or
t = +3.48 (significant)
So, to answer part b, yes, the results are significant.

¢. If the data constitutes a valid random sample of Neanderthal skulls, the
results indicate Neanderthal man had a larger brain size than modern
Caucasian man. This, by the way, is true according to numerous skull
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findings over the past century and a half. Cro-Magnum man (our direct
ancestors), according to accumulated evidence, also had larger cranial
capacity.

Validity: The primary issue here seems to be, again, random selection. If
all eleven skulls came from the same fossil site, this does not constitute random
selection. Coming from one fossil site, all the skulls may have been from mem-
bers of one family or clan and it is not unusual for members of the same family
or clan to have similar biological traits (e.g., large heads). In other words, validity
would be more assured if the skulls were randomly selected from, let’s say, a
great many Neanderthal skulls discovered at several widely scattered sites.

Other risks to validity seem minimal. Accurate and reliable measures of
cranial capacity can be achieved with properly calibrated scientific instruments,
of course barring researcher mistakes, shoddy technique, or questions of honesty.

Historical discussion: This and other evidence led scientists in the late
1800s to conclude that brain size does not determine intelligence. Some other
evidence was women on average have 5 to 10 cubic inches less cranial capacity
than men and larger people tend to have larger brains. Perhaps one final deciding
factor was the death of Carl Gauss in 1855 (universally acclaimed mathematician,
scientist, and genius who, by the way, is responsible for the discovery and vali-
dation of much of the work you’ve studied in the last few chapters, specifically,
the normal curve, standard deviation, and the central limit theorem). Upon au-
topsy, it was discovered Gauss’s brain was near average in size. The theory that
a large brain produces great intellect soon thereafter began to crumble. So, even
in his death, the great Carl Gauss contributed to the advancement of knowledge.
Although of near average brain size, he was a true giant among men.

One last word in Gauss’s defense: Upon autopsy of his brain, it was noted,
however, the surface of Gauss’s brain was more richly textured than the average
man’s brain, with many more folds and crevices, as illustrated below.

Q)

Brain of a Brain of
Papuan* Carl Gauss
(tribesman of

the East Indies)

*From E. A. Spitzka, Transactions of the American Philosophical Society 21 (1907):
175-308, as presented in S. J. Gould, The Mismeasurement of Man (New York: W. W.
Norton Co., 1981).
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Perhaps a brain is like a radiator. A radiator with more folds and crevices (thus,
more surface area) radiates more heat. Perhaps a brain with more folds and crev-
ices radiates more intellect. For further reading on these topics of intelligence

and cranial measurement, refer to S. J. Gould, The Mismeasurement of Man.

Summary

Hypothesis Test

A test designed to prove or disprove some initial
claim. This initial claim is referred to as the null
hypothesis and denoted as H,.

We begin any hypothesis test by assuming the
initial claim, the null hypothesis (Hy) is true. The
second step i$ to establish a range of values where
we would expect sample results (in this case, X's) to
fall if Hy were true. If the sample ¥ of your
experiment falls in this range, we merely accept Hy,
otherwise we reject.

Physical Layout for Hypothesis Test

(Large Sample, n = 30)

Both the population and x distributions have the
same mean, i, established by the null hypothesis, Hy.

Physical Layout
for Hypothesis Test

Population

The spread of the population, o, can be
estimated by s, the spread of the sample data. And
the spread of the X distribution, oy, is calculated
using the central limit theorem formula,

& & c s
CoUn Un
where s, the spread of the sample data. can be used

to estimate o, the spread of the data in the
population.

Establishing Cutoffs for Accepting H,

The cutoffs are established using the level of
significance (o risk) you are willing to accept in the
experiment. For instance, if you establish o = .03,
you are willing to accept a 5% risk that when H, is
true, you will reject it in error (refer to chapter 6 for
a full discussion of errors).

For a two-tailed test, . = .05 implies 2% of
the risk is placed in each of the two extreme tails,
establishing regions where you would reject .

Establishing
Cutoffs for
Accepting H,,

Population

Pow f
o = .05 (5%) for two-tailed test;
reject H,, for any sample ¥
in these tails

For a one-tailed test, the entire o risk is placed in
one tail and we reject Hy if our sample X falls in that
one tail.

Population

r xxx
()
Example: for oo = .05 and H;: p = xxx,

we would reject H, for any X in the
extreme left (shaded) tail



Determining which tail in which to place the o
risk is dependent on how H,, is stated. For example,
if Hy is stated, p = xxx or more, this requires the
entire o risk be placed in the extreme left tail (where
you would reject Hy, shown in the previous sketch).

Control Charts

A control chart provides a clear visual history of a
repetitive test. Essentially, cutoffs are established in
a hypothesis test (using actual values or z scores) and
the graph rotated +turn counterclockwise, extending
the cutoff lines to the right. This provides a clear on-
going space to plot several sample X’s. These X’s,
represented as dots in the sketch below, are often
connected to each other by line segments as shown.

Small-Sample Hypothesis Testing (n < 30)

Small samples (n < 30) can be effectively used in
hypothesis testing provided two conditions are
satisfied, namely

1. The population from which you sample is
normally distributed or at least somewhat mound
shaped. Generally, the smaller your sample size,
the more critical this restriction, and
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2. If we use s to estimate 6 (which we almost always
do) in the calculation of o5, we must use a ¢ score
and not a z score to define the number of standard
deviations the X’s would be expected to fall from .

Discussion of condition 1: Although mild to
moderate violation of this normal-population
condition can often be tolerated with little effect on
the validity of the test, severe departure (such as
when a population is extremely skewed) can
seriously compromise the test’s validity.

Population: Normal or at least
somewhat mound-shaped

Discussion of condition 2: Because of the
tendency of small-sample s°s to underestimate o, we
use a 7 score at the cutoffs (and not a z score), which
essentially compensates for this tendency and allows
us to maintain the validity level (o risk) of the test.

The ¢ score values can be obtained from the ¢
tables in back of the text (df = n — 1). Once these
two conditions are satisfied, the small-sample
hypothesis test is conducted in a manner much like
any hypothesis test. For a two-tailed hypothesis test,
the layout would be as follows.

Population

t cutoff 1 cutoff

(df=n-1) (df=n-1)
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Exercises

Note that full answers for exercises 1-5 and
abbreviated answers for odd-numbered exercises
thereafter are provided in the Answer Key.

7.1 A supplier claims the average thickness
(diameter) of its fiber-optic thread is .560 mm (no
more, no less), per your specifications. You receive a
shipment but before you accept it, you take a random
sample, with the following results:

n = 225 measurements
X = .553 mm
s = .030 mm

a. Test the supplier’s claim at a .01 level of
significance.

b. Are the results “‘significant™? Would you accept
or reject the shipment?

7.2 Elavil is a powerful sedating drug prescribed
by psychiatrists for the treatment of depression;
however, dosages must be minimized to reduce side
effects. A leading health organization claims the
minimum effective dosage nationwide is on average
140.0 mg/day or less. A manufacturer of the drug
decides to test the claim with the following sample
results:

n = 900 patients

¥ = 141.6 mg/day minimum effective dosage
s = 48.2 mg/day

a. Test the health organization’s claim (u = 140.0
mg/day) at o = .04,

b. Are the results “*significant’’? Do we have
evidence to refute the health organization’s claim?

7.3

a. For exercise 7.1, set up a control chart.

b. On this control chart, plot the shipment result
from exercise 7.1, ¥ = .553 mm, along with
additional shipment results: x = .558 mm,
¥ = .551 mm, and X = .559 mm. Indicate the
results that are significant.

. For exercise 7.2, set up a control chart.

]

d. On this control chart, plot the sample results from
exercise 7.2, X = 141.6 mg/day, along with the
results of subsequently conducted studies:

X = 138.7 mg/day, X = 137.1 mg/day, and
X = 140.9 mg/day. Indicate the results that are
significant.

7.4 Social IQ in children (the ability to read subtle,
nonverbal clues and accurately assess social
boundaries) may be a better predictor of success in
life than mental [Q according to recent studies.

Suppose Mrs. Berry has her Raleigh-Durham
elementary school class of 12 gifted (high mental IQ)
students tested on a social 1Q scale, with the
following results:

n = 12 students
x = 110.8 social IQ
5= 16.3

Il

(assume a normal population)

a, Test the hypothesis at oo = .02 that these students
came from a population with social IQ, u = 100
(which is average for children of this age). Are
the results significant?

b. If the data constitutes a valid random sample of
gifted students, what conclusions can be drawn?
Briefly discuss validity.

7.5 Anthropologists have long claimed it is not
necesarily the size of the brain that determines
intelligence. To prove their point, measurements are
taken of the cranial capacity of n = 10 Neanderthal
skulls (a species of primitive man living during the
period from 200,000 B.c. to 30,000 B.C.) with the
following results:

(In cubic inches)

87 98
88 87
95 84
91 95
89 96 (assume a normal population)

a. Calculate X and s for this sample.
b. Ata .05 level of significance, test the claim that the
sample group came from a population with a mean



of 87.0 cubic inches or less (87.0 cubic inches is the
approximate average cranial capacity of modern
man). Are the results significant?

c. If the data constitutes a valid random sample of
Neanderthal skulls, what conclusions can be drawn?
Briefly discuss validity.

7.6 Bloomindorfs Department Store in Manhattan
hired a new specialist to redo their autumn fashion
windows. The specialist is known for her exquisite
coordinations of clothing, antique furniture, and
accessories (all of which are sold at Bloomindorfs).

After setting up the new displays,
Bloomindorfs wished to test whether any change had
occurred in the number of customers entering the
store per hour. Suppose it is known through
electronic counters that the average number of
customers for this store is 212 per hour and that a
random sample now produces the following data.

n = 30 one-hour intervals

x = 231 customers per hour
s = 82 customers per hour

At a .05 level of significance, does the above data
imply the new window displays have affected the
average number of customers per hour entering the
store? In other words, test the hypothesis, @ = 212
per hour.

7.7 Excessive weight gain is a fear of those who
wish to quit smoking, according to an article in the
New England Journal of Medicine. Data gathered
from the 1970s and 1980s indicate that after two
years men gain on average 6.0 b and women on
average 8.0 Ib more than those who continue to
smoke.

Suppose a group of epidemiologists at the
University of Rochester conducted the following
research to see if these results still hold true in the
1990s.

Men: n= 110
X = 6.8 Ib increase
s=271b

Women: n = 90

X = 7.4 1b increase
s=351b
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a. At a .02 level of significance, test the claim that
men still gain on average 6.0 Ib.

b. At a .04 level of significance, test the claim that
women still gain on average 8.0 Ib.

¢. Refer to part a. Suppose three such studies were
conducted in the 1990s, yielding ¥ = 6.8,
X = 6.23, and X = 6.47. Set up a control chart
demonstrating this.

d. Briefly discuss validity.

7.8 Pig farmers in Canada are trying to sell pork as
the “other white meat besides chicken” (according to
an article in Western Producer), claiming to have
evolved a leaner, more efficient breed of pig. One of
the claimed advantages of this new breed is that it
takes substantially less time for a pig to reach final
market weight (thus saving a farmer money in feeding
and tending).

Suppose researchers at Texas Agriculture
decided to test the claim, with the following results:

n = 80 randomly selected new-breed pigs
x = 157 days (birth to final market weight)
s = 11.5 days

The old breed took on average 170 days to reach
final market weight. At a .03 level of significance,
test the hypothesis that the average number of days
to reach final weight for this new breed of pig is
the same as the old breed, p = 170 days. (Notice
we test the sample ¥ against the established norm, in
this case, that pigs currently take on average,

u = 170 days to reach final market weight; it is
common to use the established norm to set the
hypothesis.)

7.9 Growth hormone administered to short children
is thought to increase height beyond expected levels,
according to published data (Lancer 336:1331-1334).
Suppose research yielded the following results.

n

38 children
x = 1.2 inch growth (beyond expected)
s = .84 inches

Generally in such experiments we assume a null
hypothesis of “‘no change,”” in this case, 0’ growth
(beyond expected). In other words, it is customary in
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scientific investigations to start with the assumption
that the treatment is ineffective. In this case, that a
child taking the hormone will grow, on average, no
more or no less than expected for that time period.
We must prove otherwise.

At o = .01, test the claim that this sample was
taken from a population of u = 0"’ growth (beyond
expected).

7.10 A toiletry manufacturer claims their bottles
contain ar least 9.00 oz. of bath lotion (as stamped
on the label). Suppose the Federal Trade Commission
(FTC) investigated by randomly sampling 49 bottles,
with the following results:

= 49 bottles
8.94 oz.
.12 oz.

n
x
3

At a .02 level of significance, does the FTC have
legal grounds to proceed against the company on the
unfair practice of short selling? In other words, test
the claim, p is at least 9.00 oz. (L = 9.00).

7.11 Certain nutritionists are outraged over the
apparent lack of concern among physicians about so-
called moderate cholesterol levels, claiming the
average heart attack victim’s cholesterol level is 230
mg/dl or less.

Suppose this prompted two studies, yielding
the following results:
First Study: n = 80 heart attack victims

x = 226.0 mg/dl cholesterol level

prior to heart attack
37.3 mg/dl

Il

= 67 heart attack victims

241.1 mg/dl cholesterol level
prior to heart attack

s = 32.5 mg/dl

Second Study:  #

=

=l
Il

a. Use the data in the first study to test the claim,
= 230 mg/dl (o0 = .01).

b. Use the data in the second study to test the claim,
w = 230 mg/dl (o0 = .05).

¢. What might account for the marked difference in
results from the two studies?

7.12 Bypass surgery for obesity is increasingly
becoming an option for those who have failed more
moderate weight controlling strategies. In the
procedure, vast tracts of the stomach are stapled off
leaving a small pouch and narrow pathway leading to
the intestines. Claims of weight losses have averaged
over 120 Ib (monitored two years after surgery).

Suppose researchers at the University of
California tested this claim with the following
results:

n = 73 patients monitored two years after surgery
x = 108 1b weight loss

s=1231b

Il

At o = .01, test the claim, u = 120.0 Ib weight loss.

7.13 To qualify for poverty funds, legislators in a
particular district in Philadelphia had to show
average household income for a family of four was
$11,809 or below. A study was commissioned
yielding the following:

1 = 53 households in district
x = $12,053 annual household income
s = $4,320

a. At o = .03, does this particular legislative district
qualify for poverty funds?

b. To reduce the possibility of falsely disqualifying a
district, should a .03 or .01 level of significance
be used? Briefly explain.

7.14 After the theft of several masterpieces, a New
England Art Museum was quite concerned that the
night security guard was diligent in performing his
rounds. One way to monitor this was to ensure it
took on average 21.0 minutes (no more, no less) to
complete a known series of checks. The security
guard was randomly clocked, yielding the following:

n = 12 observations
x = 18.6 minutes
s = 4.3 minutes

(assume a normal population)

a. At o = .01, test the claim that the average time it
takes for the security guard to make the rounds is
21.0 minutes (n = 21.0).



b. At a = .10, test the same claim, p = 21.0.

¢. To reduce the possibility of falsely accusing the
guard of not adequately performing rounds,
should a .01 or .10 o level be set? Briefly explain.

7.15 Jessica, a new recruit at a local army base in
Georgia, claims her average time to clean her M16
rifle to pass inspection is “*a cool 11.7 min.”” Her
buddies, suspecting an unsubstantiated brag, decide
to test her claim and randomly clocked her (in secret)
on 6 attempts, yielding:

n = 6 rifle cleanings

X = 13.57 minutes
= 3.2 minutes

=

o

{assume a normal population)

a. At o = .05, test the claim that the average time it
takes Jessica to clean her M16 rifle to pass
inspection is at most 11.7 minutes (u = 11.7).

b. At o = .025, test the same claim, 4 = [1.7.

7.16 A rare Assyrian coin minted well over 2000
years ago was claimed to have contained af least 3.2
grams of gold, on average. A museum curator
managed to locate 8 such coins and assessed their
gold content at:

2.9,8.5, 30, 3.2,3.3,3:0,2.7, 3.2

{assume a normal

population)

a. At o = .01 level of significance, test the claim
u=3.2

b. If the data constitutes a valid random sample of these
Assyrian coins, what conclusions can be drawn?
Briefly discuss validity.

7.17 Children who are abused or severely
neglected have lower intelligence and an increased
risk of depression, drug abuse, and suicide, according
to researchers at State University of New York/
Albany and at University of Minnesota (New York
Times, February 18, 1991, p. All).

Suppose the American Association for the
Advancement of Science. in an effort to substantiate
these claims, sponsored a study in the Albany area,
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which monitored several randomly selected children.
Of these, seven turned out to be abused or severely
neglected, yielding the following:

Change in 10k =6, =17, =12, =15, =9, —~7yand
— 11 points
{assume a normal population)

a. In such experiments, we assume g = 0 change in I1Q.
In other words, it is customary in scientific
investigations to start with the assumption the factors
being studied (abuse or neglect) do not affect our
measured variable (1Q). We must prove otherwise.

At oo = .02, test the hypothesis of 1 = 0
change in 1Q.

b. If the data constitutes a valid random sample, what
conclusions can be drawn? Briefly discuss validity.

7.18 Bone loss from prolonged space travel can be
a serious problem, according to researchers at
Pennsylvania State University, especially in the leg
and spine regions. Suppose some estimate, on
average, a 3% or more bone loss from extended
space travel and the National Aeronautic and Space
Administration (NASA) decided to conduct research
on nine astronauts, yielding the following:

Bone Loss in Leg and Spinal Regions From
Extended Space Travel (In Percentage Loss)

1.2 2.0 5.0
2.9 2.4 1.7
32 0.0 4.1

a. At o = .05, test the claim of u = 3.0% or more
bone loss.,

b. If the data constitutes a valid random sample, what
conclusions can be drawn? Briefly discuss validity.

(assume a normal population)
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Endnotes

Hypothesis Testing

I. Historical endnote on W. Gossett: Gossett
was part of a group of young university sci-
entists in 1899 appointed to the brewing staff
at the Guinness Breweries in Dublin. He tried
to apply statistical techniques to experiments
at the brewery and soon grew concerned using
small-sample 57s to estimate © in experiments
involving the quality of raw material (barley,
hops, etc.), and in production tests and in
finished-product tests,

This and other concerns led to a meeting with
Karl Pearson in 1905. Gossett spent part of
the academic year (1906-1907) at Pearson’s
Biometric Laboratory in London. From this
stay, came a number of original papers, in-
cluding the famous “‘Probable Error of a
Mean'’ paper in 1908, in which he presented
the ¢ distributions for small-sample testing,
which Fisher later incorporated into his
ANOVA tables. We owe much to the original

work of W. Gossett who published under the
pen name, Student (assumedly referring to
being a student of Karl Pearson).

Some early history: The r score distributions
were derived empirically by W. Gossell and
first published in an article, **The Probable
Error of a Mean,”” which appeared in Bio-
metrika, VI, pp. 1-25, in 1908, under the pen
name, Student. Gossett was a British statisti-
cian and advisor to the Guinness Breweries in
Dublin, Ireland. The Guinness Company for-

bade employees from publishing the results of

research, however, the firm relaxed this ruling
in Gossett’s case to allow him to publish
under a pen name.

Gossett derived the ¢ distributions empirically
using published data of body measurements
(height and left middle finger) of 3000 crim-
inals, from which he repeatedly selected small

random samples. He successfully applied the
results to other published data taken from
(1) the Journal of Physiology (1904), which
showed the effects of optical isomers of
hyoscyamine hydrobromide in producing
sleep, and data taken from (2) the Journal of
the Agricultural Society concerning the
causes which lead to the production of hard
(glutinous) wheat and soft (starchy) wheat.

Gossett’s article was a ground-breaking
achievement. In many experiments, only
small samples can be used, which Gossett
cited as, '*some chemical. many biological
and most agricultural and large scale’™” exper-
iments, and these had been outside the range
of statistical enquiry, that is, up until his
research.

See endnotes 1 and 10 in chapter 10 for more
on W. Gossett.



